
[Patil, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1611-1615]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Cell Counting Attack and Browser Attack against TOR Network
Prof. Swati Patil*1, Mr. Surendra Patil2

*1
 HOD of IT Department, GHRIEM, Jalgaon, India

2
 Computer Science and Engineering, GHRIEM, Jalgaon, India

Swati.patil@raisoni.net
Abstract

 The onion router (TOR) allows to hide your identity various software under this categories are available
that allows online anonymity network, supporting TCP applications over the Internet. It doesn't allow network
surveillance or traffic analysis to get tracked but most of these software used equal size of cells (512B). In this paper
we are comparing cell-counting attacks and browser attacks against TOR. Different from cell-counting attacks, these
attacks can confirm anonymous communication relationships quickly and accurately by manipulating one single cell
and pose a serious threat against Tor. A malicious entry onion router may duplicate, modify, insert, or delete cells of
a TCP stream from a sender. The manipulated cells traverse middle onion routers and arrive at an exit onion router
along a circuit. Because Tor uses the counter mode AES (AES-CTR) for encrypting cells, the manipulated cells
disrupt the normal counter at exit onion routers and decryption at the exit onion router incurs cell recognition errors,
which are unique to the investigated cell counting attacks. In Browser Attack, a user’s web browser into sending a
distinctive signal over the Tor network that can be detected using traffic analysis. It is delivered by a malicious exit
node using a man-in-the-middle attack on HTTP. Both the attack and the traffic analysis can be performed by an
adversary with limited resources. While the attack can only succeed if the attacker controls one of the victim’s entry
guards, the method reduces the time required for a traffic analysis attack on Tor from O(nk) to O(n + k), where n is
the number of exit nodes and k is the number of entry guards.

Keywords: TOR, TCP, Anonymizer, Anonymity, cell counting, Browser, signal, AES.

 Introduction
Any message sent over the internet contains

routing information that can be used to identify the
sender and receiver of the message. For many users
of the internet, this poses a problem. Activists,
Whistleblowers and human rights workers might
want to be anonymous to avoid reprisals from
oppressive governments or corporations. Military and
law enforcement personal might want to be
anonymous so that they can gather intelligence or
conduct sting operations without identifying
themselves online. People living in countries or
working at companies with censored internet may use
anonymity as a way to circumvent censorship
measures. To this end, many anonymity systems have
been developed with the goal of facilitating
anonymous communication online. These anonymity
systems are typically divided into two categories:
low-latency systems and high-latency systems. High
latency systems such as Babel, Mixmaster, and
Maximum implement defense measures such as
mixing, padding, batching, and reordering in an
attempt to protect against a global passive adversary

who can observe all networks trace [4]. However,
such systems can only be used with high-latency
communication methods like email, which limits
their utility and also limits their user base. Low-
latency systems generally do not attempt to protect
against a global passive adversary, but are usable
with a much wider variety of applications, including
web browsers, chat clients, and video streaming. One
popular low-latency anonymity network is Tor [4].
Tor works by routing a user's connection through
three onion routers (ORs), which form a circuit and
act as a chain of proxies for the connection. Messages
being sent over the connection are layered with
encryption so that each OR knows only its immediate
source and destination. Onion routers are run by
volunteers around the world. The routers are
coordinated and cataloged by a small set of directory
servers that provide information about the Tor
network and available routers to Tor clients (which
are often called onion proxies or OPs). While it does
not protect against a global passive adversary, Tor
does try to protect against a more limited adversary

[Patil, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1611-1615]

who can observe some of the traffic going over the
network, or who controls some Tor routers. This is
important because anyone can run a Tor router, and
Tor users have no guarantee that router operators are
not malicious. However, despite its design goals, Tor
is commonly assumed to be vulnerable to several
classes of attacks by non-global adversaries. In this
paper, we will examine two attacks against TOR of
those types of attacks: a passive end-to-end
correlation attack whereby an attacker controlling the
first and last routers in a circuit can compromise the
anonymity of streams going through that circuit.
While Tor is assumed to be vulnerable to these kinds
of attacks, much prior work in this area has been
done in simulation or only in theory. We seek to test
the effectiveness of these attacks on the deployed Tor
network, and to determine whether we can create a
better attack by examining metrics of Tor traffic.

 For applications that can tolerate high
latencies, such as electronic mail, there are systems
that achieve nearly perfect anonymity [1]. Such
anonymity is difficult to achieve with low latency
systems such as web browsing, however, because of
the conflict between preventing traffic analysis on the
flow of packets through the network and delivering
packets in an efficient and timely fashion. Because of
the obvious importance of the problem, there has
been a great deal of recent research on low-latency
anonymity systems. Tor, the second-generation onion
router, is the largest anonymity network in existence
today. In this paper we describe a new scheme for
executing a practical timing attack on browsing the
web anonymously with Tor. Using this attack, an
adversary can identify a fraction of the Tor users who
use a malicious exit node and then leave a browser
window open for an hour. With current entry guard
implementations, the attack requires the adversary to
control only a single Tor server in order to identify as
much as 0.4% of Tor users targeted by the malicious
node (and this probability can be increased roughly
linearly by adding more machines). The targeting can
be done based on the potential victim’s HTTP traffic

Basic Components and Operation of TOR

In this section, we first introduce the basic
components of the Tor network. We then present its
operation, including the circuit setup and its usage for
transmitting TCP streams anonymously.
Components of the Tor Network

Tor is a popular overlay network for
anonymous communication over the Internet. It is an
open source project and provides anonymity service
for TCP applications [11]. Figure 1 illustrates the
basic components of Tor [6]. As shown in Figure 1,
there are four basic components:

1) Alice (i.e. Client). The client runs local software
called onion proxy (OP) to anonymizing the client
data into Tor.
2) Bob (i.e. Server). It runs TCP applications such as
a web service and anonymously communicates with
Alice as the client over Tor.
3) Onion routers (OR). Onion routers are special
proxies that relay the application data between Alice
and Bob. In Tor, Transport Layer Security (TLS)
connections are used for the overlay link encryption
between two onion routers. The application data is
packed into equal-sized cells (512 bytes as shown in
Figure 2) carried through TLS connections.
4) Directory servers. They hold onion router
information such as public keys for onion routers.
There are directory authorities and directory caches.
Directory authorities hold authoritative information
on onion routers and directory caches download
directory information of onion routers from
authorities. The client downloads the onion router
directory from directory caches.

Fig.1: Tor Network

Functions of onion proxy, onion router, and
directory servers are integrated into the Tor released
software package. A user can edit a configuration file
and configure a server to have different combinations
of those functions. Figure 2 illustrates the cell format
used by Tor. All cells have a three bytes header,
which is not encrypted in the onion-like fashion so
that the intermediate Tor routers can see this header.
The other 509 bytes are encrypted in the onion-like
fashion. There are two types of cells: the control cell
shown in Figure 2 (a) and relay cell shown in Figure
2 (b). The command field (Command) of a control
cell can be: CELL PADDING, used for keep alive
and optionally usable for link padding, although not
used currently; CELL CREATE or CELL
CREATED, used for setting up a new circuit; and
CELL DESTROY, used for releasing a circuit. The
command field (Command) of a relay cell is CELL
RELAY. Notice that relay cells are used to carry TCP
stream data from Alice to Bob. The relay cell has an
additional header, namely the relay header. There are

[Patil, 3(3): March, 2014]

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research

numerous types of relay commands (
Command), including RELAY COMMAND BEGIN
RELAY COMMAND DATA, RELAY COMMAND
END, RELAY COMMAND SENDME
COMMAND EXTEND, RELAY COMMAND
DROP, and RELAY COMMAND RESOLVE
will explain these commands further in later sections
of the paper when we discuss the Tor operations from
protocol-level attacks perspective.

(a) Tor Cell Format

(b) TOR Relay Cell Format
Fig. 2: Cell Format by Tor [8]

Selecting a Path and Creating a Circuit

In order to anonymously communicate with
applications, i.e., browsing a web server, a client uses
a way of source routing and chooses a series of onion
routers from the locally cached directory,
downloaded from the directory caches [7]. We denot
the series of onion routers as the path
[8]. The number of onion routers is referred to as the
path length. We use the default path length of 3 as an
example in Figure 1 to illustrate how the path is
chosen. The client first chooses an appropriate exit
onion router OR3, which should have an exit policy
supporting the relay of the TCP stream from the
sender. Then, the client chooses an appropriate entry
onion router OR1 (referred to as entry guard
to prevent certain profiling attacks [12]) and a middle
onion router OR2. Once the path is chosen, the client
initiates the procedure of creating a circuit ov
path incrementally, one hop at time. The procedure of
creating a circuit when the path has a default length
of 3. Tor uses TLS/SSLv3 for link authentication and
encryption.

Cell-Counting-Based Attack

In this section, we first show that the size of
packets in the Tor network is very dynamic. Based on
this finding, we then introduce the basic idea of the
cell-counting-based attack and list some challenging
issues related to the attack and present solutions to
resolve those issues.
Dynamic IP Packet Size of Traffic over Tor

In Tor, the application data will be packed into
equal-sized cells. Nonetheless, via extensive
experiments over the Tor network, we found the size
of IP packets transmitted over Tor is dynamic. It can
be observed that the size of packets from the sender

 ISSN: 2277
 Impact Factor: 1.852

International Journal of Engineering Sciences & Research
[1611-1615]

numerous types of relay commands (Relay
RELAY COMMAND BEGIN,

RELAY COMMAND
RELAY COMMAND SENDME, RELAY

RELAY COMMAND
RELAY COMMAND RESOLVE2. We

will explain these commands further in later sections
of the paper when we discuss the Tor operations from

Tor Cell Format

(b) TOR Relay Cell Format

Fig. 2: Cell Format by Tor [8]

a Circuit
In order to anonymously communicate with

applications, i.e., browsing a web server, a client uses
a way of source routing and chooses a series of onion
routers from the locally cached directory,
downloaded from the directory caches [7]. We denote

path through Tor
[8]. The number of onion routers is referred to as the

. We use the default path length of 3 as an
example in Figure 1 to illustrate how the path is
chosen. The client first chooses an appropriate exit

3, which should have an exit policy
supporting the relay of the TCP stream from the

en, the client chooses an appropriate entry
entry guard and used

to prevent certain profiling attacks [12]) and a middle
2. Once the path is chosen, the client

initiates the procedure of creating a circuit over the
path incrementally, one hop at time. The procedure of
creating a circuit when the path has a default length
of 3. Tor uses TLS/SSLv3 for link authentication and

In this section, we first show that the size of IP
packets in the Tor network is very dynamic. Based on
this finding, we then introduce the basic idea of the

based attack and list some challenging
issues related to the attack and present solutions to

t Size of Traffic over Tor
In Tor, the application data will be packed into
sized cells. Nonetheless, via extensive

experiments over the Tor network, we found the size
of IP packets transmitted over Tor is dynamic. It can

packets from the sender

to the receiver is random over time, and a large
number of packets have varied sizes, other than the
cell size or maximum transmission unit (MTU) size.

Basic Idea of Cell-Counting-Based Attack
The basic idea is as follows. An

the exit onion router first selects the target traffic
flow between Alice and Bob. The attacker selects a
random signal, chooses an appropriate time, and
changes the cell count of target traffic based on the
selected random signals. In this way
able to embed a signal into the target traffic from
Bob. The signal will be carried along with the target
traffic to the entry onion router connecting to Alice.
An accomplice of the attacker at the entry onion
router will record the variation of the received cells
and recognize the embedded signal. If the same
pattern of the signal is recognized, the attacker
confirms the communication relationship between
Alice and Bob.

Selecting the
Target

Encoding the
Signal

Anonymous
Communication
Network

A signal

Fig 3: Cell-counting-based attack.

Browser Attacks
To browse the Internet anonymously using

Tor, a user must use an HTTP proxy such as Privacy
so that traffic will be diverted through Tor rather
than sent directly over the Internet. This is especially
important because browsers will not aut
send DNS queries through a SOCKS proxy.
However, pieces of software that plug into the
browser, such as Flash, Java, and ActiveX Controls,
do not necessarily use the browser’s proxy for their
network traffic. Thus, when any of these programs
are downloaded and subsequently executed by the
web browser, any Internet connections that the
programs make will not go through Tor first.
Instead, they will establish direct TCP connections,
compromising the user’s anonymity, as shown in
Figure 4. This attack allows a website to identify its
visitors but does not allow a third party to identify
Tor users visiting a given website. These active

ISSN: 2277-9655
Impact Factor: 1.852

International Journal of Engineering Sciences & Research Technology

to the receiver is random over time, and a large
number of packets have varied sizes, other than the
cell size or maximum transmission unit (MTU) size.

Based Attack
The basic idea is as follows. An attacker at

the exit onion router first selects the target traffic
flow between Alice and Bob. The attacker selects a
random signal, chooses an appropriate time, and
changes the cell count of target traffic based on the
selected random signals. In this way, the attacker is
able to embed a signal into the target traffic from
Bob. The signal will be carried along with the target
traffic to the entry onion router connecting to Alice.
An accomplice of the attacker at the entry onion

tion of the received cells
and recognize the embedded signal. If the same
pattern of the signal is recognized, the attacker
confirms the communication relationship between

Recording
Packets

Recognize the
embedded Signal

Recovered
Signal

based attack.

To browse the Internet anonymously using
Tor, a user must use an HTTP proxy such as Privacy
so that traffic will be diverted through Tor rather
than sent directly over the Internet. This is especially
important because browsers will not automatically
send DNS queries through a SOCKS proxy.
However, pieces of software that plug into the
browser, such as Flash, Java, and ActiveX Controls,
do not necessarily use the browser’s proxy for their
network traffic. Thus, when any of these programs

downloaded and subsequently executed by the
web browser, any Internet connections that the
programs make will not go through Tor first.
Instead, they will establish direct TCP connections,
compromising the user’s anonymity, as shown in

ck allows a website to identify its
visitors but does not allow a third party to identify
Tor users visiting a given website. These active

[Patil, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1611-1615]

content systems are well-known problems in
anonymous web-browsing, and most anonymizing
systems warn users to disable active content systems
in their browsers. In October 2006, Fort Consult
Security [2] described how to extend this attack so
that parties could identify Tor users visiting a
website they do not control. The attacker uses a
malicious exit node to modify HTTP traffic and thus
conduct a man-in-the-middle attack, as shown in
Figure 3. In particular, it inserts an invisible iframe
with a reference to some malicious web server and a
unique cookie. In rendering the page, the web
browser will make a request to the web server and
will retrieve a malicious Flash application. If Flash
is enabled in the browser, then the Flash movie is
played invisibly. The Flash application sends the
cookie given to the user directly to the evil web
server, circumventing Tor. The web server can then
identify which web pages were sent to which users
by matching the cookies with the Flash connections.
In other words, all Tor users who use HTTP through
that exit node while Flash is enabled will have their
HTTP traffic associated with their respective IP
addresses. However, if we assume that the number
of malicious Tor servers is small compared to the
total number of Tor servers, a normal user will get a
malicious exit node only once in a while. As a result,
this attack only works to associate traffic with the
particular user for the length of time that the user
keeps the same Tor circuit, or at most ten minutes by
default.

Evil web
Server

Flash

Client

Fig 4: A browser attack using Flash included in a

website

A Browser-Based Timing Attack

The attack of a Tor client without using
invasive plugins like Java or Flash but with
JavaScript instead.

JavaScript alone is not powerful enough to
discover the client’s IP address, but combined with a
timing attack similar to the one presented by Øverlier
and

Syverson [1], an adversary has a non-trivial chance of
discovering a client in a reasonable amount of time.
To implement this attack using only the HTML meta
refresh tag, but the JavaScript version is simpler so
we discuss it first. This attack is partially mitigated
by entry guards, which has become a standard feature
of Tor.
1. The attacker first sets up the necessary resources.
(a) The attacker inserts two malicious nodes into the
Tor network: one to act as an entry node, and the
other to act as an exit node.
(b) The attacker sets up a web server that receives
and logs JavaScript connections.
2. The malicious exit node modifies all HTTP traffic
destined for Tor clients to include an invisible
JavaScript signal generator that generates a unique
signal for each Tor client.
3. The Tor client’s web browser executes the
JavaScript code, sending a distinctive signal to the
web server. This traffic passes through the Tor
circuit, and the client is still anonymous.
4. Approximately every ten minutes, the Tor client
chooses a new circuit. Eventually, an unlucky Tor
client picks and uses the malicious entry node.
5. The attacker performs traffic analysis to compare
the signals on each circuit passing through his entry
node with the various signals received by the web
server. A match reveals the Tor client’s identity and
its corresponding traffic history during the time it
used the malicious exit node.

The entry node only needs to log the traffic
pattern that passes through it on each circuit, and the
exit node only needs to perform the code injections in
the HTTP traffic. Although for clarity we described
the attack with multiple machines, the malicious Tor
nodes and the web server can all be implemented on
the same machine. If the user is browsing the web
while using the malicious entry node, the traffic
analysis can be difficult because the additional traffic
introduces “noise” to the signal. However, if the user
stops browsing the web, the channel contains little
“noise” and the traffic analysis is easy. A method of a
browser based timing attack for simplifying the even
if the user does continue browsing the web using
TOR. For most traffic analysis attacks, the attacker
must control both the exit node and entry node at the
same time. For our attack, if a client leaves a browser
window open running the JavaScript signal generator,
and at any later point chooses a malicious entry node,
then the timing attack can reveal his identity. Since
this only requires the right choice of an entry node,
the probability that the client is compromised each
time he chooses a new circuit is roughly 1/ ne, where
ne is the number of available entry nodes. If the
attacker had to get control of both the entry and exit
nodes at the same time, the probability would then be

[Patil, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1611-1615]

1/ ne*nx, where nx is the number of available exit
nodes. The signal generator allows us to decouple the
need to control an exit node and an entry node at the
same time, decreasing the expected time to
compromise the client. As with any such traffic
analysis attack, the adversary can further decrease the
time the attack takes by increasing the number of
malicious Tor entry nodes [10].

Conclusion

A cell-counting-based attack and browser
attack against TOR. This two attacks is difficult to
detect and able to quickly and accurately confirm the
anonymous communication relationship among
users on Tor. In cell counting based attacker at the
malicious exit onion router slightly manipulates the
transmission of cells from a target TCP stream and
embeds a secret signal (a series of binary bits) into
the cell counter variation of the TCP stream. An
accomplice of the attacker at the entry onion router
recognizes the embedded signal using our developed
recovery algorithms and links the communication
relationship among users.

In browser attack exploits the web browser
code execution environment to perform end-to-end
traffic analysis attacks without requiring the attacker
to control either party to the target communication.
There are two security problems that our attack
exploits: HTTP’s vulnerability to man-in-the-middle
attacks and web browsers’ code execution feature.
Tor places the exit node as a man-in-the-middle of
clients’ communications. Thus, using Tor may
actually decrease the anonymity of users by making
them vulnerable to man-in-the-middle attacks from
adversaries that would otherwise be unable to
perform such attacks.

References

[1] L. Øverlier and P. Syverson. Locating
Hidden Servers. In Proceedings of the 2006
IEEE Symposium on Security and Privacy,
May 2006.

[2] P. Syverson, G. Tsudik, M. Reed, and C.
Landwehr. Towards an Analysis of Onion
Routing Security. Workshop on Design
Issues in Anonymity and Unobservability,
July 2000.

[3] N. B. Amir Houmansadr and N.
Kiyavash,“RAINBOW: A robust and
invisible non-blind watermark for network
flows,” inProc. 16th NDSS, Feb. 2009, pp.
1–13.

[4] X. Fu, Z. Ling, J. Luo, W. Yu,W. Jia, and W.
Zhao, “One cell is enough to break Tor’s

anonymity,” in Proc. Black Hat DC, Feb.
2009

[5] [Online]. Available:
http://www.blackhat.com/presentations/bh-
dc-09/Fu/BlackHat-DC-09-Fu-reak-Tors-
Anonymity.pdf

[6] G. Danezis, R. Dingledine, and N.
Mathewson, “Mixminion: Design of a type
III anonymous remailer protocol,” in Proc.
IEEE S&P, May 2003, pp. 2–15.

[7] G. Smillie, Analogue, Digital
Communication Techniques. London, U.K.:
Butterworth-Heinemann, 1999.

[8] R. Dingledine, N. Mathewson, and P.
Syverson, “Tor: The second generation
onion router,” in Proc. 13th USENIX
Security Symp., Aug. 2004, p. 21.

[9] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W.
Zhao, “On flow correlation attacks and
countermeasures in Mix networks,” in Proc.
PET, May 2004, pp. 735–742.

[10] S. J. Murdoch and G. Danezis, “Low-cost
traffic analysis of Tor,” in Proc. IEEE S&P,
May 2006, pp. 183–195

[11] X.Wang, S. Chen, and S. Jajodia, Network
flow watermarking attack on low latency
anonymous communication systems,” in
Proc. IEEE S&P, May 2007, pp. 116–130.

[12] K. Bauer, D. McCoy, D. Grunwald, T.
Kohno, and D. Sicker, “Lowresource
routing attacks against anonymous
systems,” in Proc. ACM WPES, Oct. 2007,
pp. 11–20.

[13] D. Chaum. Untraceable electronic mail,
return addresses, and digital pseudonyms.
Communications of the ACM 24(2),
February 1981.

[14] D. Clark. Design Philosophy of the DARPA
Internet Protocols. In Proceedings of the
ACM Special Interest Group on Data
Communications, pages 106–114, August
1988.

[15] R. Dingledine, N. Mathewson, and P.
Syverson. Tor: The Second-Generation
Onion Router. In Proceedings of the 13th
USENIX Security Symposium, August 2004.

[16] B. N. Levine, M. Reiter, C. Wang, and M.
Wright. Timing Attacks in Low-Latency Mix
Systems (Extended Abstract), In Proc.
Financial Cryptography, pages 251– 265,
February 2004.

[17] V.Fusenig, E.Staab, U.Sorger, and T.Engel,
“Slotted packet counting attacks on
anonymity protocols,” in Proc. AISC, 2009,
pp.53–60.

[Patil, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1611-1615]

[18] W.Yu,X. Fu, S.Graham, D.Xuan, and
W.Zhao, “DSSSbased flow marking
technique for invisible
traceback,”inProc.IEEES&P,May2007,
pp.18–32.

[19] X. Wang, D. S. Reeves, S. F. Wu, and J.
Yuill, “Sleepy watermark tracing: An active
network-based intrusion response
framework,” in Proceedings of 16th
International Conference on Information
Security (IFIP/Sec), June 2001.

[20] S. C. X. Wang and S. Jajodia, “Network
flow watermarking attack on low-latency
anonymous communication systems,” in
Proceedings of the 2007 IEEE Symposium
on Security and Privacy (S&P), May 2007.

[21] C. G¨ulc¨u and G. Tsudik, “Mixing email
with babel,” in Proceedings of the Network
and Distributed Security Symposium
(NDSS), February 1996.

[22] M. Reiter and A. Rubin, “Crowds:
Anonymity for web transactions,” ACM
Transactions on Information and System
Security, vol. 1, no. 1, 1998

[23] K. Bauer, D. McCoy, D. Grunwald, T.
Kohno, and D. Sicker, “Lowresource
routing attacks against anonymous
systems,” in Proceedings of ACM Workshop
on Privacy in the Electronic Society
(WPES), October 2007.

[24] N. Mathewson, “Tor directory protocol,
version 3,”
http://tor.eff.org/svn/trunk/doc/spec/dir-
spec.txt, 2008.

[25] G. Danezis and R. Clayton, “Route
fingerprinting in anonymous
communications,” in Proceedings of the
Sixth IEEE International Conference on
Peer-to-Peer Computing, September 2006.

[26] M. Wright, M. Adler, B. N. Levine, and C.
Shields, “Defending anonymous
communication against passive logging
attacks,” in Proceedings of the IEEE
Symposium on Security and Privacy, May
2003.

[27] K. Bauer, D. McCoy, D. Grunwald, T.
Kohno, and D. Sicker, “Low resource
routing attacks against anonymous
systems,” University of Colorado at
Boulder, Tech. Rep., August 2007.

[28] K. Harfoush, A. Bestavros, and J. W. Byers,
“Measuring bottleneck bandwidth of
targeted path segments,” in Proceedings of
the IEEE INFOCOM, April 2003.

[29] X. Wang and D. S. Reeves, “Robust
correlation of encrypted attack traffic

through stepping stones by manipulation of
inter-packet delays,” in Proceedings of the
2003 ACM Conference on Computer and
Communications Security (CCS), November
2003.

[30] P. Peng, P. Ning, and D. S. Reeves, “On the
secrecy of timing-based active watermarking
trace-back techniques,” in Proceedings of
the IEEE Security and Privacy Symposium
(S&P), May 2006.

